Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 738
Filtrar
1.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474743

RESUMO

Hemodialysis has a detrimental effect on fat-free mass (FFM) and muscle strength over time. Thus, we aimed to evaluate the effect of creatine supplementation on the body composition and Malnutrition-Inflammation Score (MIS) in patients with chronic kidney disease (CKD) undergoing hemodialysis. An exploratory 1-year balanced, placebo-controlled, and double-blind design was conducted with hemodialysis patients (≥18 years). The creatine group (CG) received 5 g of creatine monohydrate and 5 g of maltodextrin per day and the placebo group (PG) received 10 g of maltodextrin per day. MIS and body composition were analyzed at three time points: pre, intermediate (after 6 months), and post (after 12 months). After 6 months, 60% of patients on creatine experienced an increase in FFM compared to a 36.8% increase for those on placebo. Moreover, 65% of patients on creatine increased their skeletal muscle mass index (SMMI) compared to only 15.8% for those on placebo. Creatine increased intracellular water (ICW) in 60% of patients. MIS did not change after the intervention. In the CG, there was an increase in body weight (p = 0.018), FFM (p = 0.010), SMMI (p = 0.022). CG also increased total body water (pre 35.4 L, post 36.1 L; p = 0.008), mainly due to ICW (pre 20.2 L, intermediate 20.7 L, post 21.0 L; p = 0.016). Long-term creatine supplementation in hemodialysis patients did not attenuate the MIS, but enhanced FFM and SMMI, which was likely triggered by an increase in ICW.


Assuntos
Creatina , Desnutrição , Humanos , Composição Corporal , Suplementos Nutricionais , Método Duplo-Cego , Inflamação/metabolismo , Desnutrição/metabolismo , Músculo Esquelético/metabolismo , Água/metabolismo , Adolescente , Adulto
2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396693

RESUMO

Inflammation can be triggered by a variety of factors, including pathogens, damaged cells, and toxic compounds. It is a biological response of the immune system, which can be successfully assessed in clinical practice using some molecular substances. Because adiponectin, a hormone released by adipose tissue, influences the development of inflammation, its evaluation as a potential measure of inflammation in clinical practice is justified. In the present contribution, statistical comparison of adiponectin concentration and selected molecular substances recognized in clinical practice as measures of inflammation were utilized to demonstrate whether adipose tissue hormones, as exemplified by adiponectin, have the potential to act as a measure of rapidly changing inflammation when monitoring older hospitalized patients in the course of bacterial infection. The study showed no statistically significant differences in adiponectin levels depending on the rapidly changing inflammatory response in its early stage. Interestingly, the concentration of adiponectin is statistically significantly higher in malnourished patients than in people with normal nutritional levels, assessed based on the MNA. According to the results obtained, adiponectin is not an effective measure of acute inflammation in clinical practice. However, it may serve as a biomarker of malnutrition in senile individuals.


Assuntos
Adiponectina , Desnutrição , Estado Nutricional , Idoso , Humanos , Adiponectina/sangue , Adiponectina/química , Avaliação Geriátrica , Inflamação , Pacientes Internados , Desnutrição/metabolismo , Avaliação Nutricional
3.
Food Funct ; 15(4): 2078-2089, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38303670

RESUMO

Nutritional strategies are required to limit the prevalence of denutrition in the elderly. With this in mind, fortified meals can provide more protein, but their digestibility must be ensured. Using a dynamic in vitro digester, DIDGI®, programmed with the digestion conditions of the elderly, we evaluated the supplementation of each component of a meal and assessed protein digestibility, amino acid profile, micro-nutrients and vitamins bioaccessibility for a full course meal. Higher protein digestibility was evidenced for the fortified meal, with higher release of essential amino acids. Moreover the large increase of leucine released was comparable to the range advocated for the elderly to favour protein anabolism. This in vitro study underlines the interest of using dish formulations to meet the nutritional needs of seniors, which is why this work will be completed by a clinical study in nursing home.


Assuntos
Digestão , Desnutrição , Humanos , Idoso , Aminoácidos/metabolismo , Aminoácidos Essenciais/metabolismo , Desnutrição/prevenção & controle , Desnutrição/metabolismo , Leucina/metabolismo , Ração Animal , Dieta , Íleo/metabolismo
4.
J Nutr Biochem ; 124: 109511, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37913969

RESUMO

Protein malnourishment (PM) is common among the elderly, but how aging and PM impact hematopoiesis is not fully understood. This study aimed to assess how aging and PM affect the hematopoietic regulatory function of bone marrow (BM) mesenchymal stem cells (MSCs). Young and aged male C57BL/6J mice were fed with normoproteic or hypoproteic diets and had their nutritional, biochemical, and hematological parameters evaluated. BM MSCs were characterized and had their secretome, gene expression, autophagy, reactive oxygen species production (ROS), and DNA double-stranded breaks evaluated. The modulation of hematopoiesis by MSCs was assayed using in vitro and in vivo models. Lastly, BM invasiveness and mice survival were evaluated after being challenged with leukemic cells of the C1498 cell line. Aging and PM alter biochemical parameters, changing the peripheral blood and BM immunophenotype. MSC autophagy was affected by aging and the frequencies for ROS and DNA double-stranded breaks. Regarding the MSCs' secretome, PM and aging affected CXCL12, IL-6, and IL-11 production. Aging and PM up-regulated Akt1 and PPAR-γ while down-regulating Cdh2 and Angpt-1 in MSCs. Aged MSCs increased C1498 cell proliferation while reducing their colony-forming potential. PM and aging lowered mice survival, and malnourishment accumulated C1498 cells at the BM. Finally, aged and/or PM MSCs up-regulated Sox2, Nanog, Pou5f1, and Akt1 expression while down-regulating Cdkn1a in C1498 cells. Together, aging and PM can induce cell-intrinsic shifts in BM MSCs, creating an environment that alters the regulation of hematopoietic populations and favoring the development of malignant cells.


Assuntos
Desnutrição , Células-Tronco Mesenquimais , Humanos , Idoso , Masculino , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Hematopoese , Células-Tronco Mesenquimais/metabolismo , Envelhecimento , Desnutrição/metabolismo , DNA/metabolismo
5.
Behav Brain Res ; 460: 114817, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38122904

RESUMO

Environmental factors such as undernutrition and environmental enrichment can promote changes in the molecular and behavioural mechanisms related to cognition. Herein, we investigated the effect of enriched environment stimulation in rats that were malnourished in the pre- and postnatal periods on changes in the gene expression of brain-derived neurotrophic factor and its receptor in the hippocampus, as well as on anxiety traits and memory. Early undernutrition promoted weight reduction, increased the risk analysis, reduced permanence in the open arm of the elevated plus-maze and induced a reduction in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B. However, exposure to an enriched environment from 30 to 90 days' old maintained the malnourished phenotype, leading to weight reduction in the control group. In addition, the enriched environment did not alter the risk assessment in the undernourished group, but it did increase the frequency of labyrinth entries. Sixty-day exposure to the enriched environment resulted in a reversal in the gene expression of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus of malnourished rats and favoured of long-term memory in the object recognition test in the open-field. These results suggest that an enriched environment may have a protective effect in adult life by inducing changes in long-term memory and anxiety traits in animals that were undernourished in early life. Furthermore, reversing these effects of undernutrition involves mechanisms linked to the molecular signalling of brain-derived neurotrophic factor and tropomyosin receptor kinase B in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Desnutrição , Gravidez , Feminino , Ratos , Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tropomiosina/metabolismo , Meio Ambiente , Ansiedade , Vitaminas , Desnutrição/complicações , Desnutrição/metabolismo , Hipocampo/metabolismo , Redução de Peso , Receptor trkB/metabolismo
6.
Nutrients ; 15(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960292

RESUMO

Taste disorders are common among cancer patients undergoing chemotherapy, with a prevalence ranging from 20% to 86%, persisting throughout treatment. This condition leads to reduced food consumption, increasing the risk of malnutrition. Malnutrition is associated not only with worse treatment efficacy and poor disease prognosis but also with reduced functional status and quality of life. The fruit of Synsepalum dulcificum (Daniell), commonly known as miracle berry or miracle fruit, contains miraculin, a taste-modifying protein with profound effects on taste perception. The CLINMIR Protocol is a triple-blind, randomized, placebo-controlled clinical trial designed to evaluate the regular consumption of a food supplement containing a miraculin-based novel food, dried miracle berry (DMB), on the taste perception (measured through electrogustometry) and nutritional status (evaluated through the GLIM Criteria) of malnourished cancer patients under active antineoplastic treatment. To this end, a pilot study was designed with 30 randomized patients divided into three study arms (150 mg DMB + 150 mg freeze-dried strawberries, 300 mg DMB, or placebo) for three months. Throughout the five main visits, an exhaustive assessment of different parameters susceptible to improvement through regular consumption of the miraculin-based food supplement will be conducted, including electrical and chemical taste perception, smell perception, nutritional and morphofunctional assessment, diet, quality of life, the fatty acid profile of erythrocytes, levels of inflammatory and cancer-associated cytokines, oxidative stress, antioxidant defense system, plasma metabolomics, and saliva and stool microbiota. The primary anticipated result is that malnourished cancer patients with taste distortion who consume the miraculin-based food supplement will report an improvement in food taste perception. This improvement translates into increased food intake, thereby ameliorating their nutritional status and mitigating associated risks. Additionally, the study aims to pinpoint the optimal dosage that provides maximal benefits. The protocol adheres to the SPIRIT 2013 Statement, which provides evidence-based recommendations and is widely endorsed as an international standard for trial protocols. The clinical trial protocol has been registered at the platform for Clinical Trials (NCT05486260).


Assuntos
Desnutrição , Neoplasias , Humanos , Percepção Gustatória , Paladar , Projetos Piloto , Estado Nutricional , Qualidade de Vida , Frutas/metabolismo , Neoplasias/metabolismo , Suplementos Nutricionais , Desnutrição/etiologia , Desnutrição/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto
7.
Nutrients ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37892398

RESUMO

Mother's milk contains a unique microbiome that plays a relevant role in offspring health. We hypothesize that maternal malnutrition during lactation might impact the microbial composition of milk and affect adequate offspring gut colonization, increasing the risk for later onset diseases. Then, Wistar rats were fed ad libitum (Control, C) food restriction (Undernourished, U) during gestation and lactation. After birth, offspring feces and milk stomach content were collected at lactating day (L)4, L14 and L18. The V3-V4 region of the bacterial 16S rRNA gene was sequenced to characterize bacterial communities. An analysis of beta diversity revealed significant disparities in microbial composition between groups of diet at L4 and L18 in both milk, and fecal samples. In total, 24 phyla were identified in milk and 18 were identified in feces, with Firmicutes, Proteobacteria, Actinobacteroidota and Bacteroidota collectively representing 96.1% and 97.4% of those identified, respectively. A higher abundance of Pasteurellaceae and Porphyromonas at L4, and of Gemella and Enterococcus at L18 were registered in milk samples from the U group. Lactobacillus was also significantly more abundant in fecal samples of the U group at L4. These microbial changes compromised the number and variety of milk-feces or feces-feces bacterial correlations. Moreover, increased offspring gut permeability and an altered expression of goblet cell markers TFF3 and KLF3 were observed in U pups. Our results suggest that altered microbial communication between mother and offspring through breastfeeding may explain, in part, the detrimental consequences of maternal malnutrition on offspring programming.


Assuntos
Microbioma Gastrointestinal , Desnutrição , Microbiota , Ratos , Feminino , Animais , Leite/metabolismo , Lactação/metabolismo , Ratos Wistar , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Leite Humano/microbiologia , Dieta , Fezes/microbiologia , Bactérias/genética , Desnutrição/metabolismo
8.
Eur J Drug Metab Pharmacokinet ; 48(6): 657-663, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700116

RESUMO

BACKGROUND: Moderate malnutrition is a common problem in young children. It is observed that severe malnutrition affects the pharmacokinetics of chemotherapy drugs in pediatric cancer patients, but moderate malnutrition is not well studied in this context. OBJECTIVES: In this study, we aimed to understand how moderate malnutrition affects the pharmacokinetics of two chemotherapy drugs, etoposide and vincristine, using a murine model of early age moderate malnutrition. METHODS: We developed a murine model of moderate childhood malnutrition by subjecting freshly weaned Sprague-Dawley rats to 8% protein diet for 8 weeks. In two separate experiments, we administered etoposide and vincristine (N = 8 for etoposide and N = 12 for vincristine each in protein deficient and control groups) through tail vein injection for pharmacokinetics study. RESULTS: We found ~ 60% increase in area under the concentration-time curve (AUC) of etoposide in malnourished animals as compared to well-nourished animals. Furthermore, clearance, volume of distribution, and half-life were decreased by ~ 37, 53, and 24%, respectively, in malnourished animals. Pharmacokinetic parameters of vincristine showed only marginal differences between well-nourished and malnourished groups. CONCLUSIONS: Our results suggest that while moderate malnutrition significantly affects the pharmacokinetics of etoposide, pharmacokinetics of vincristine remain unchanged. Since chemotherapy drugs have a narrow therapeutic index, the difference in AUC observed in our study might explain the increased toxicity of etoposide in malnourished pediatric cancer patients. This brings forth a need for robust clinical studies to validate our findings and optimize dose for malnourished patients.


Assuntos
Desnutrição , Neoplasias , Humanos , Criança , Ratos , Camundongos , Animais , Pré-Escolar , Etoposídeo/farmacocinética , Vincristina , Modelos Animais de Doenças , Ratos Sprague-Dawley , Desnutrição/metabolismo
9.
Reproduction ; 166(5): 311-322, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37647207

RESUMO

In brief: Inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. This study shows that maternal restricted - and over- nutrition during gestation do not affect semen characteristics in F1 male offspring but alters offspring sperm sncRNA profiles and DNA methylome in sheep. Abstract: There is a growing body of evidence that inadequate maternal nutrition during gestation can have immediate and lifelong effects on offspring. However, little is known about the effects of maternal nutrition during gestation on male offspring reproduction. Here, using a sheep model of maternal restricted - and over - nutrition (60 or 140% of the National Research Council requirements) during gestation, we found that maternal restricted - and over - nutrition do not affect semen characteristics (i.e. volume, sperm concentration, pH, sperm motility, sperm morphology) or scrotal circumference in male F1 offspring. However, using small RNA sequencing analysis, we demonstrated that both restricted - and over - nutrition during gestation induced marked changes in composition and expression of sperm small noncoding RNAs (sncRNAs) subpopulations including in male F1 offspring. Whole-genome bisulfite sequencing analysis further identified specific genomic loci where poor maternal nutrition resulted in alterations in DNA methylation. These findings indicate that maternal restricted - and over - nutrition during gestation induce epigenetic modifications in sperm of F1 offspring sperm in sheep, which may contribute to environmentally influenced phenotypes in ruminants.


Assuntos
Epigenoma , Desnutrição , Feminino , Gravidez , Animais , Masculino , Ovinos , Sêmen , Motilidade dos Espermatozoides , Reprodução , Espermatozoides/metabolismo , Desnutrição/metabolismo
10.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445858

RESUMO

This study aimed to elucidate the effects of maternal undernutrition (MUN) on epigenetic modification of hepatic genes in Japanese Black fetal calves during gestation. Using a previously established experimental design feeding the dams with 60% (LN) or 120% (HN) of their global nutritional requirements during the 8.5-month gestational period, DNA methylation in the fetal liver was analyzed with reduced representation bisulfite sequencing (RRBS). The promoters and gene bodies in the LN fetuses were hypomethylated compared to HN fetuses. Pathway analysis showed that the genes with DMR in the exon/intron in the LN group were associated with pathways involved in Cushing syndrome, gastric acid secretion, and aldosterone synthesis and secretion. Promoter hypomethylation in the LN group was frequently observed in genes participating in various signaling pathways (thyroid hormone, Ras/Rap1, PIK3-Akt, cAMP), fatty acid metabolism, and cholesterol metabolism. The promoter hypomethylated genes ALPL and GNAS were upregulated in the LN group, whereas the promoter hypermethylated genes GRB10 and POR were downregulated. The intron/exon hypomethylated genes IGF2, IGF2R, ACAD8, TAT, RARB, PINK1, and SOAT2 were downregulated, whereas the hypermethylated genes IGF2BP2, NOS3, and NR2F1 were upregulated. Collectively, MUN alters the promoter and gene body methylation of genes associated with hepatic metabolisms (energy, cholesterol, mitochondria) and function, suggesting an impact of altered gene methylation on the dysregulation of gene expression in the fetal liver.


Assuntos
Doenças Fetais , Desnutrição , Gravidez , Humanos , Feminino , Animais , Bovinos , Metilação de DNA , Troca Materno-Fetal , Epigênese Genética , Fígado/metabolismo , Desnutrição/genética , Desnutrição/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
Exp Neurol ; 368: 114481, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463612

RESUMO

Early-life adversity, like perinatal protein malnutrition, increases the vulnerability to develop long-term alterations in brain structures and function. This study aimed to determine whether perinatal protein malnutrition predisposes to premature aging in a murine model and to assess the cellular and molecular mechanisms involved. To this end, mouse dams were fed either with a normal (NP, casein 20%) or a low-protein diet (LP, casein 8%) during gestation and lactation. Female offspring were evaluated at 2, 7 and 12 months of age. Positron emission tomography analysis showed alterations in the hippocampal CA3 region and the accessory olfactory bulb of LP mice during aging. Protein malnutrition impaired spatial memory, coinciding with higher levels of reactive oxygen species in the hippocampus and sirt7 upregulation. Protein malnutrition also led to higher senescence-associated ß-galactosidase activity and p21 expression. LP-12-month-old mice showed a higher number of newborn neurons that did not complete the maturation process. The social-odor discrimination in LP mice was impaired along life. In the olfactory bulb of LP mice, the senescence marker p21 was upregulated, coinciding with a downregulation of Sirt2 and Sirt7. Also, LP-12-month-old mice showed a downregulation of catalase and glutathione peroxidase, and LP-2-month-old mice showed a higher number of newborn neurons in the subventricular zone, which then returned to normal values. Our results show that perinatal protein malnutrition causes long-term impairment in cognitive and olfactory skills through an accelerated senescence phenotype accompanied by an increase in oxidative stress and altered sirtuin expression in the hippocampus and olfactory bulb.


Assuntos
Senilidade Prematura , Desnutrição , Gravidez , Camundongos , Animais , Feminino , Memória Espacial , Senilidade Prematura/genética , Caseínas/metabolismo , Estresse Oxidativo , Transtornos da Memória/etiologia , Bulbo Olfatório/fisiologia , Desnutrição/complicações , Desnutrição/metabolismo
12.
Physiol Genomics ; 55(9): 392-413, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458462

RESUMO

We have previously demonstrated that pre- and early postnatal malnutrition in sheep induced depot- and sex-specific changes in adipose morphological features, metabolic outcomes, and transcriptome in adulthood, with perirenal (PER) as the major target followed by subcutaneous (SUB) adipose tissue. We aimed to identify coexpressed and hub genes in SUB and PER to identify the underlying molecular mechanisms contributing to the early nutritional programming of adipose-related phenotypic outcomes. Transcriptomes of SUB and PER of male and female adult sheep with different pre- and early postnatal nutrition histories were used to construct networks of coexpressed genes likely to be functionally associated with pre- and early postnatal nutrition histories and phenotypic traits using weighted gene coexpression network analysis. The modules from PER showed enrichment of cell cycle regulation, gene expression, transmembrane transport, and metabolic processes associated with both sexes' prenatal nutrition. In SUB (only males), a module of enriched adenosine diphosphate metabolism and development correlated with prenatal nutrition. Sex-specific module enrichments were found in PER, such as chromatin modification in the male network but histone modification and mitochondria- and oxidative phosphorylation-related functions in the female network. These sex-specific modules correlated with prenatal nutrition and adipocyte size distribution patterns. Our results point to PER as a primary target of prenatal malnutrition compared to SUB, which played only a minor role. The prenatal programming of gene expression and cell cycle, potentially through epigenetic modifications, might be underlying mechanisms responsible for observed changes in PER expandability and adipocyte-size distribution patterns in adulthood in both sexes.


Assuntos
Tecido Adiposo , Desnutrição , Gravidez , Ovinos , Masculino , Feminino , Animais , Tecido Adiposo/metabolismo , Obesidade/genética , Desnutrição/genética , Desnutrição/metabolismo , Gordura Subcutânea/metabolismo , Adiposidade
13.
Biochem Biophys Res Commun ; 676: 121-131, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506473

RESUMO

Neonatal malnutrition is one of the most common causes of neurological disorders. However, the mechanism of action of the factors associated with neonatal nutrition in the brain remains unclear. In this study, we focused on fibroblast growth factor (FGF) 21 to elucidate the effects of malnutrition on the neonatal brain. FGF21 is an endocrine factor produced by the liver during lactation which is the main source of nutrition during the neonatal period. In this study, malnourishment during nursing mice induced decreased levels of Fgf21 mRNA in the liver and decreased levels of FGF21 in the serum. RNA-seq analysis of neonatal mouse brain tissue revealed that FGF21 controlled the expression of Kalrn-201 in the neonatal mouse brain. Kalrn-201 is a transcript of Kalirin, a Ras homologous guanine nucleotide exchange factor at the synapse. In mouse neurons, FGF21 induced the expression of Kalirin-7 (a Kalirin isoform) by down-regulating Kalrn-201. FGF21-induced Kalirin-7 stimulated neurite outgrowth in Neuro-2a cells. FGF21 also induced Growth hormone-releasing hormone (GHRH) expression in Neuro-2a cells. Kalirin-7 and GHRH expression induced by FGF21 was altered by inhibiting the activity of SH2-containing tyrosine phosphatase (SHP2) which is located downstream of the FGF receptor (FGFR). Additionally, malnourished nursing induced intron retention of the SHP2 gene (Ptpn11), resulting in the alteration of Kalirin-7 and GHRH expression by FGF21 signaling. Ptpn11 intron retention is suggested to be involved in regulating SHP2 activity. Taken together, these results suggest that FGF21 plays a critical role in the induction of neuronal neurite outgrowth and GHRH secretion in the neonatal brain, and this mechanism is regulated by SHP2. Thus, Ptpn11 intron retention induced by malnourished nursing may be involved in SHP2 activity.


Assuntos
Fatores de Crescimento de Fibroblastos , Desnutrição , Camundongos , Animais , Animais Recém-Nascidos , Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/metabolismo , Desnutrição/metabolismo , Crescimento Neuronal , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Encéfalo/metabolismo
14.
Front Endocrinol (Lausanne) ; 14: 1152444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288304

RESUMO

Objective: Acyl-CoA-binding protein (ACBP)/diazepam-binding inhibitor has lately been described as an endocrine factor affecting food intake and lipid metabolism. ACBP is dysregulated in catabolic/malnutrition states like sepsis or systemic inflammation. However, regulation of ACBP has not been investigated in conditions with impaired kidney function, so far. Design/methods: Serum ACBP concentrations were investigated by enzyme-linked immunosorbent assay i) in a cohort of 60 individuals with kidney failure (KF) on chronic haemodialysis and compared to 60 individuals with a preserved kidney function; and ii) in a human model of acute kidney dysfunction (AKD). In addition, mACBP mRNA expression was assessed in two CKD mouse models and in two distinct groups of non-CKD mice. Further, mRNA expression of mACBP was measured in vitro in isolated, differentiated mouse adipocytes - brown and white - after exposure to the uremic agent indoxyl sulfate. Results: Median [interquartile range] serum ACBP was almost 20-fold increased in KF (514.0 [339.3] µg/l) compared to subjects without KF (26.1 [39.1] µg/l) (p<0.001). eGFR was the most important, inverse predictor of circulating ACBP in multivariate analysis (standardized ß=-0.839; p<0.001). Furthermore, AKD increased ACBP concentrations almost 3-fold (p<0.001). Increased ACBP levels were not caused by augmented mACBP mRNA expression in different tissues of CKD mice in vivo or in indoxyl sulfate-treated adipocytes in vitro. Conclusions: Circulating ACBP inversely associates with renal function, most likely through renal retention of the cytokine. Future studies need to investigate ACBP physiology in malnutrition-related disease states, such as CKD, and to adjust for markers of renal function.


Assuntos
Inibidor da Ligação a Diazepam , Desnutrição , Camundongos , Humanos , Animais , Indicã/metabolismo , Proteínas de Transporte/genética , Rim/metabolismo , Diazepam/metabolismo , RNA Mensageiro/metabolismo , Desnutrição/metabolismo
15.
Annu Rev Nutr ; 43: 1-23, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37253680

RESUMO

An interview with James M. Ntambi, professor of biochemistry and the Katherine Berns Van Donk Steenbock Professor in Nutrition, College of Agricultural and Life Sciences, at the University of Wisconsin-Madison, took place via Zoom in April 2022. He was interviewed by Patrick J. Stover, director of the Institute for Advancing Health through Agriculture and professor of nutrition and biochemistry and biophysics at Texas A&M University. Dr. James Ntambi is a true pioneer in the field of nutritional biochemistry. He was among the very first to discover and elucidate the role that diet and nutrients play in regulating metabolism through changes in the expression of metabolic genes, focusing on the de novo lipogenesis pathways. As an African immigrant from Uganda, his love of science and his life experiences in African communities suffering from severe malnutrition molded his scientific interests at the interface of biochemistry and nutrition. Throughout his career, he has been an academic role model, a groundbreaking nutrition scientist, and an educator. His commitment to experiential learning through the many study-abroad classes he has hosted in Uganda has provided invaluable context for American students in nutrition. Dr. Ntambi's passion for education and scientific discovery is his legacy, and the field of nutrition has benefited enormously from his unique perspectives and contributions to science that are defined by his scientific curiosity, his generosity to his students and colleagues, and his life experiences. The following is an edited transcript.


Assuntos
Agricultura , Bioquímica , Ciências da Nutrição , Humanos , Agricultura/história , Metabolismo/genética , Ciências da Nutrição/história , Estado Nutricional , Uganda , Estados Unidos , Wisconsin , População Africana , Desnutrição/genética , Desnutrição/metabolismo , Bioquímica/história
16.
J Nutr Biochem ; 116: 109312, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871838

RESUMO

Maternal undernutrition is highly prevalent in developing countries, leading to severe fetus/infant mortality, intrauterine growth restriction, stunting, and severe wasting. However, the potential impairments of maternal undernutrition to metabolic pathways in offspring are not defined completely. In this study, 2 groups of pregnant domestic pigs received nutritionally balanced gestation diets with or without 50% feed intake restriction from 0 to 35 gestation days and 70% from 35 to 114 gestation days. Full-term fetuses were collected via C-section on day 113/114 of gestation. MicroRNA and mRNA deep sequencing were analyzed using the Illumina GAIIx system on fetal liver samples. The mRNA-miRNA correlation and associated signaling pathways were analyzed via CLC Genomics Workbench and Ingenuity Pathway Analysis Software. A total of 1189 and 34 differentially expressed mRNA and miRNAs were identified between full-nutrition (F) and restricted-nutrition (R) groups. The correlation analyses showed that metabolic and signaling pathways such as oxidative phosphorylation, death receptor signaling, neuroinflammation signaling pathway, and estrogen receptor signaling pathways were significantly modified, and the gene modifications in these pathways were associated with the miRNA changes induced by the maternal undernutrition. For example, the upregulated (P<.05) oxidative phosphorylation pathway in R group was validated using RT-qPCR, and the correlational analysis indicated that miR-221, 103, 107, 184, and 4497 correlate with their target genes NDUFA1, NDUFA11, NDUFB10 and NDUFS7 in this pathway. These results provide the framework for further understanding maternal malnutrition's negative impacts on hepatic metabolic pathways via miRNA-mRNA interactions in full-term fetal pigs.


Assuntos
Feto , Desnutrição , Gravidez , Feminino , Animais , Suínos , RNA Mensageiro/metabolismo , Feto/metabolismo , Fígado/metabolismo , Transdução de Sinais , Desnutrição/metabolismo
17.
Biol Trace Elem Res ; 201(6): 2879-2894, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36076144

RESUMO

Zinc (Zn) plays an important role in the maintenance of redox status in the biological system. Zn deficiency has been found to be associated with negative effects on the functioning of many organ systems, including hepatic and renal systems. Bisphenol A (BPA) can alter Zn homeostasis and perturb the physiological system by provoking oxidative stress, which can lead to damage of different organs such as reproductive, immune, neuroendocrine, hepatic and renal systems. The present study aims to investigate the toxicity of BPA in Zn deficient condition in the liver and kidney of rat and to correlate its synergistic actions. Zn deficiency was induced by feeding Zn-deficient diet (ZDD), and BPA was administered orally (100 mg/kg/d). Male Sprague-Dawley rats were divided into four groups: NPD + Vehicle (normal feed and water), NPD + BPA (100 mg/kg/d), ZDD + Vehicle (fed with Zn-deficient diet only) and ZDD + BPA (Zn-deficient diet + BPA; 100 mg/kg/d) for 8 weeks. Biochemical, histopathological, TUNEL assay and protein expression profiles were determined to decipher the oxidative damage induced by ZDD and the toxicant BPA. Expression profile of nuclear factor erythroid 2-related factor 2, proliferating cell nuclear antigen, kelch-like ECH-associated protein 1, superoxide dismutase-1, metallothionein and apoptosis incidence showed that ZDD and BPA have a synergistic exacerbation effect on the liver and kidney of rat.


Assuntos
Fígado , Desnutrição , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Fígado/metabolismo , Zinco/farmacologia , Desnutrição/metabolismo , Rim/metabolismo , Estresse Oxidativo
18.
Nutr Neurosci ; 26(9): 875-887, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36125026

RESUMO

Background: Childhood malnutrition can have devastating consequences on health, behavior, and cognition. Edible insects are sustainable low cost high protein and iron nutritious foods that can prevent malnutrition. However, it is unclear whether insect-based diets may help prevent changes to brain neurochemistry associated with malnutrition.Materials and Methods: Weanling male Sprague-Dawley rats were malnourished by feeding a low protein-iron diet (LPI, 5% protein and ∼2 ppm Fe) for 3 weeks or nourished by feeding a sufficient protein-iron diet (SPI, 15% protein 20 ppm FeSO4) for the duration of the study. Following 3 weeks of LPI diet, three subsets of the malnourished rats were placed on repletion diets supplemented with cricket, palm weevil larvae, or the SPI diet for 2 weeks, while the remaining rats continued the LPI diet for an additional 2 weeks. Monoamine-related neurochemicals (e.g. serotonin (5-HT), dopamine (DA), norepinephrine) and select monoamine metabolites were measured in the hypothalamus, hippocampus, striatum, and prefrontal cortex using Ultra High-Performance Liquid Chromatography.Results: Five weeks of LPI diets disrupted brain monoamines, most notable in the hypothalamus. Two weeks supplementation with cricket and palm weevil larvae diets prevented changes to measures of 5-HT and DA turnover in the hippocampus and hypothalamus. Moreover, these insect diets prevented the malnutrition-induced imbalance of 5-HT and DA metabolites in the hippocampus, striatum, and hypothalamus.Conclusion: Edible insects such as cricket and palm weevil larvae could be sustainable nutrition intervention to prevent behavioral and cognitive impairment associated abnormal brain monoamine activities that results from early life malnutrition.


Assuntos
Insetos Comestíveis , Desnutrição , Ratos , Animais , Masculino , Insetos Comestíveis/metabolismo , Serotonina/metabolismo , Ratos Sprague-Dawley , Encéfalo/metabolismo , Desnutrição/complicações , Desnutrição/metabolismo , Dopamina/metabolismo , Norepinefrina/metabolismo , Ferro/metabolismo
19.
Biol Trace Elem Res ; 201(2): 739-750, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35211842

RESUMO

Zinc (Zn) is an essential element that regulates not only cellular immunity but also antioxidant and anti-inflammatory agents. The present study investigated the effect of Zn deficiency on renal cell apoptosis and its mechanism. A Zn-deficient kidney model in mice was created by a Zn-deficient diet. Mice were fed diets with different Zn levels for 41 days as follows: normal-Zn group (NG, 34 mg Zn/kg), low-Zn group (LG, 2 mg Zn/kg), and high-Zn group (HG, 100 mg Zn/kg). H&E staining showed that inflammatory cells and many erythrocytes exuded in the renal tissue space of the low-Zn group, and TUNEL staining indicated massive death of kidney cells in the low-Zn group. In the low-Zn group, the levels of oxygen free radicals (ROS) were significantly increased, the antioxidants were significantly decreased, and the total antioxidant capacity was decreased. Moreover, RT-qPCR and ELISA results showed that inflammatory factors (TNF-α, IL-1ß, and IL-6) were significantly increased in the low-Zn group. In addition, the levels of p-IκBα, p-NF-κB p65, p-ERK, p-JNK, and p-p38 were significantly increased in the low-Zn group, indicating that zinc deficiency activates NF-κB and MAPK signalling as well as increases its expression. RT-qPCR analysis of apoptosis-related genes, including Bcl-2 Bax, Caspa8, Caspa6, and Caspa3, demonstrated that the expression levels of proapoptotic genes in mouse kidneys were significantly increased. Importantly, the in vitro results were consistent with the in vivo results. Together, these data suggested that zinc deficiency induces renal oxidative stress to activate NF-κB and MAPK signalling, thereby inducing renal cell apoptosis.


Assuntos
Antioxidantes , Desnutrição , Animais , Camundongos , Antioxidantes/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Apoptose , Desnutrição/metabolismo , Zinco/farmacologia , Rim/metabolismo
20.
Biol Trace Elem Res ; 201(7): 3461-3473, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36208383

RESUMO

Selenium deficiency can affect the level of selenoprotein in organs and tissues and cause inflammation. However, the mechanism of selenium deficiency on jejunal injury in chickens remains unclear. In this study, we established a selenium deficiency model in chickens by feeding a low selenium diet and observed ultrastructural and pathological changes in the jejunum. The expression levels of 25 selenoproteins, the levels of oxidative stress, tight junction (TJ) proteins, and antimicrobial peptides (AMP), as well as the expression levels of factors related to inflammatory signaling pathways, were examined in the intestine and analyzed using principal component analysis (PCA). The results of PCA and quantitative real-time PCR (qRT-PCR) showed that selenium deficiency mainly affected the expression of antioxidant selenoproteins in chicken jejunum, especially glutathione peroxidases, thioredoxin reductase, and iodothyronine deiodinase, thus weakening the antioxidant function in the intestine and inducing oxidative stress. We also found disruption of intestinal TJ structures, a significant reduction in TJ protein expression, and downregulation of antimicrobial peptide levels, suggesting that selenium deficiency led to damage of the intestinal barrier. In addition, a significant increase in inflammatory cell infiltration and expression of inflammatory factors was observed in the jejunum, indicating that selenium deficiency induces inflammatory injury. In conclusion, selenium deficiency downregulates antioxidant selenoproteins levels, induces oxidative stress, decreases intestinal AMP levels, and leads to inflammatory injury and disruption of the intestinal barrier in the jejunum. These results shed new light on the molecular mechanisms of intestinal damage caused by selenium deficiency.


Assuntos
Desnutrição , Selênio , Animais , Selênio/farmacologia , Antioxidantes/metabolismo , Galinhas/metabolismo , Jejuno/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Estresse Oxidativo , Desnutrição/metabolismo , Peptídeos Antimicrobianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...